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Continued fractions

Given x € R, recall that |x] =max{n€Z | n<x}. Thus
3] = ] =13.99] =3.

To a sequence of integers ag, a1, an, - €N, we attach the
continued fractions

[ag, a1, a2, ,an] = ap + €Q.

ai +

a +
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Continued fractions

To a sequence of integers ag, ai,an, - €N, we attach the
continued fractions

[a0,a1,a2,--+,an] = a0 + €Q.

1
[2,3,57] =2+ ———— =",

.
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Continued fractions

To a sequence of integers ag, a1, az,--- € N, we attach the
continued fractions

1
[30;31,32>"';3n]:30+ 1 E@'
ai +
1
a +
1
o+ —
dn
1
[a0,a1,-*,an-1,an] = [a0,a1,**,an-1+ a—].

n
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Continued fractions

To a sequence of integers ag, a1,an, - € N, we attach the
continued fractions

[30,31,32,"',an]:ao+ E@'
ai +
a +

_ 1
b

dn

We will see that IiT [a0, a1, a2, -, ap| exists; we will then
n—-+oo

denote it by
[a0,a1,a2, -] €R.
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Continued fraction expansion
of a real number
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The continued fraction attached to a real number

Let x € R be fixed. We construct two sequences
X0, X1,X2,--- € R and ag, a1, ap, - €7

by setting xp = x and inductively a, = [x,] and x,+1 = ﬁ If
X, = a, for some n, we stop.
Note that x,>1 and a,=1 for all n>1.

For x =7, we find
@ xp=x=m=23.14159...,
° a0=1lx0l=3, X1 =325 = gaarses = 706251,
® ar=lal=7  x=325 = gosrs = 15.99659...,
® a=Dxl=15, x3=31- = gggeso = 1.00341...,
° a3=1al=1,  xa= 15 = goosars = 292.63459. .,
@ az=|xg] =292, and so on.
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The continued fraction attached to a real number

This process stops if x € Q, and goes on for all ne N if

x eR\Q.

Proof.

Suppose xz%e@. Then xp = %, ag= L%J =Q,

X1 = Xoiao = %iQ = _%Q :% where A= BQ + R is the

Euclidean division of A by B. So the continued fraction

expansion follows the steps of the Euclidean algorithm for

gcd(A, B). After finitely many steps, we get remainder 0,

so x, €N, so a, = X, so we stop.

Conversely, 1
x,,:a,,:>x,,€@:>xn_1:X—+a,,_1€@:>---:>x0€@,

n
so this cannot happen if xe R\ Q. ]




The continued fraction attached to a real number

This process stops if x € Q, and goes on for all ne N if
x€eR\Q.

For x = 29—3 € Q, we find
° xp=x=2,
® 20=lol=2 1= Xoiao - %1—2 = %
° aj=Ix]=1, xzlefalzéz%
°© a=lx|=1, X3:X2_a2:$:4,
@ a3=|x3] =x3~» STOP.

v
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Rationals as continued fractions

For all n=0, we have
[a0, a1, an-1,Xn] = X.

Induction on n.

e For n=0, [xo] = x0 = x, OK.
@ If true for n, then

[a0, a1, an Xn+1] = [20, 31, *, @n—1,an + 1/ Xn+1]
=[ao, a1, ,an-1,%n] = x. O

<

Nicolas Mascot Introduction to number theory



Rationals as continued fractions

For all n=0, we have
[aOIal»"' )an—].)Xn] =X.

Every x € Q can be expressed as a finite continued fraction.

23 1
Z o114 =2+——
g - ] 1

1+——

L=
4
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Convergents
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Two more sequences

To a sequence of integers ag, a1, az, -+ €N, we attach two
sequences p_3,p-1,Po,p1,--* €N and q-2,9-1,90,91,-- €N by
p-2=0, p-1=1, Pn=anPn-1+ pn-2 for n=0;
g2=1, g-1=0, Gn = anGn-1+qn-2 for n=0.

Thus for example pg=ag, go=1; and p1 = a1a0+1, g1 = a1.

If x>1, then a,=1 for all n, so py,q, = F, for all n=0,
where F, is the Fibonacci sequence defined by

Fo=F1=1 Fp=Fp1+Fpo.
In particular pp, g, — +oo; more specifically

1+ \/g)n—l
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The convergents

The quantities [ag,a1,--+,an] (n=0) are called the convergents
of the continued fraction.

Theorem

For all n=0, we have [ag,a1,--,apn] = i

n
y
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The convergents

Theorem

For all n=0, we have [ag,a1,--+,ap| = &.
n
Induction on n.
@ For n=0, po/qo=ap/1=[ao] ~» OK.
@ Suppose it is true for n. Define a new sequence a),, for
m<nby ay=ao,-*-,a,_; :a,,_l,a;,:an+% and the

+1'
corresponding p},, g, then p.. = pp, for m < n whereas
1 n-
P;, = azp:-,_]_ + p;,_g = (an + m)pn—l +Pn-2=pPn+ %,
and similarly for the g,,. Thus

[aO,a]_,"' ;an;an+1] = [aO,a]_,"' »an+a_] = [36,33_,"' )a;-,]

0 + Pn-1 n+1
Ind. Pn _ Pn™ a5y _ @nt1Pn+Po-1 _ Pn+l ¥
Gn  Gn+ 2L anaapntPo-1 Gel
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The convergents

For all n=0, we have [ag,a1, - ,an] = —.

For all y >0 and for all n,

[aO)aly"' ,am}/] =

YPn+ Pn-1
Yaqntdn-1
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|dentities between successive convergents

Theorem

For all n=0, we have
dnPn-1— Pndn-1 = (_1)n and AnPn-2 — Pndn-2 = (_1)n lan-

Proof.
a, 1
Let M, = ( it 0) and X, = (qi”jl p‘;jl). As X, = MpXo_1,
9nPn-1 = PnAn-1 = det(Xn) = det(MnMn—l o MOX—I)
= det(M,)det(M,_1)---det(Mp)det(X_1)
= (1" g 8] = -1y
In particular,

dnPn-2 — PnGn-2 = (anQn—l + qn—2)Pn—2 - (anpn—l + Pn—2)Qn—2
= an(qn—lpn—2 _pn—lqn—2) = (—1)”_1a,,. L]
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|dentities between successive convergents

For all n=0, we have
GnPn-1—Pnqn-1=(-1)

The fraction p,/q, is always in lowest terms.

and  qnpn-2—PnQn-2= (_1)n_1an-

n
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Convergence of
continued fractions
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Fix x e R\ Q (so the continued fraction is infinite). We define
an, xp for n=0 by
1

xp=x; andfor n=0, a,=[x,], Xps1= ;
n—4dn

and then p,, g, for n= -2 by
p—2=0, p_1=1, Pn = anpPn-1+ pn-2 for n=0,

g—2=1, ¢g-1=0, dn = anqn-1+ qn-2 for n=0.
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Comparison of successive convergents

Lemma

For all n=0, we have % < x if n is even, and % > x if n is odd.
n n

The function y — [ap,--+,ap-1,y] is a composition of n
reciprocals, so it is increasing if n is even, and decreasing if n
is odd.

Besides, % =[ao,*+,an-1,an] whereas x =[ag,--,an-1,Xn),
and a, = [xn] < xp. O]
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Comparison of successive convergents

%>xifn is odd.
n

For all n=0, we have % < x if n is even, and

n

Lemma

P2n . . .
The subsequence —— s increasing.
Q2n

P2n+1
Q2n+1

& _ Pn-2 _ PnGn-2 — 4nPn-2 _ (_1)nan
dn Qn-2 dndn-2 dndn-2

The subsequence is decreasing.

U
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Convergence of continued fractions

n|—i>Too[a0’ aig,--- ran] =X.

We have proved that

P2n < P2n+2 < P2n+1 < P2n-1

<X .
d2n  Q2n+2 Q2n+1  QG2n-1
This shows that P lo < x, and el /1= x.
q2n q2n+1
But )
_ —1—Pp_ -1)"
&_pn lzannl Pn 1qn:( ) —>0W£0:€1=X. 0
dn dn-1 dndn-1 dndn-1
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Convergence of continued fractions

n|—i>Too[aO’ aig,--- 7an] =X.

Every x € R can be expressed as a continued fraction.

If x¢ @, this expression is unique: If x =[bg, by, -]
1 1 1
<—=<1,
1 b1
b1 aF =

where b, €N, then 0<x—bg =

so necessarily by = |x], etc.
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Diophantine approximation




The quality of a rational approximation

Fix x € R\ Q, and define as usual a,, pn, gn.

Since x ¢ Q, we have x # p/q for all p,ge Z. But as Q is dense

in R, we can choose p,q so that ‘x— g’ is as small as we want.

For 7 =3.1415926535....., we have |7 — 33| <1072,
|- 3131391 < 1075, etc.

~ 100000

But can we achieve ‘x— g‘ small with p, g not too large?
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The quality of a rational approximation

Fix x € R\ Q, and define as usual a,, pn, gn.
Since x ¢ Q, we have x # p/q for all p,ge Z. But as Q is dense

in R, we can choose p, g so that ‘X— g’ is as small as we want.

But can we achieve ‘x— g‘ small with p, g not too large?

Definition (Unofficial)

The quality of the approximation p/q of x is

Qualx(p/q)=q

P|_
x——‘—qu—pl
q

The smaller Qualy(p/q), the better the approximation. So
how small can Qualy(p/q) be?
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Convergents are excellent approximations

1

For all n=0, we have ; <

<
Cln(qn + C7n+1)

Anqn+1 .

We know that 220 < P20x2 5 o P20l o P2n-1 on for g| p,
q2n q2n+2 q2n+1 q2n-1

Pn
X — —

qn

Pnt1 _ Pn
dn+1 an

_ |Pn+19n — Pnqn+1l _ |+ 1]
G| GnQn+1’

<

w_ Pl [Pnt2 _ Pn| _ |Pn+2qn = Pndns2l _ | ans2l

dn dn+2 Qn dndn+1 AnQn+2
1 1
= =2 = > . O
qn(an+2qn+1+qn) qn(Gn1 + =) qn(qn+ qn+1)

an+2

but also
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Convergents are excellent approximations

For all n=0, we have —— < x=Pnl <
qﬂ(qn"‘ Gn+1) dnl  Gndn+1’
Corollary
1
Qualx(pn/qn) < tends to 0.
n+1
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Convergents are excellen

t approximations

For all n=0, we have—< x—&
qn(qn+Qn+1) dn qnqn+1
Corollary
1
Qualx(pn/qn) < tends to 0.
dn+1 )

With x =7, we get

n|-2 -1]0 1 2 3 4

an 3 7 15 1 292

pn| 0O 1

gn| 1 O
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Convergents are excellen

t approximations

For all n=0, we have—< x—&
qn(qn+Qn+1) dn qnqn+1
Corollary
1
Qualx(pn/qn) < tends to 0.
dn+1 )
With x =7, we get
n|-2 -1]0 1 2 3 4
an 3 7 15 1 292
pnl 0O 113
g 1 0 |1
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Convergents are excellen

t approximations

For all n=0, we have—< x—&
qn(qn+Qn+1) dn qnqn+1
Corollary
1
Qualx(pn/qn) < tends to 0.
dn+1 )
With x =7, we get
n|-2 -1]0 1 2 3 4
an 3 7 15 1 292
pn| 0O 1 (3 22
g1 1 0|1 7
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Convergents are excellen

Proposition

t approximations

For all n=0, Wehave—< x—& <
qn(qn+Qn+1) dn qnqn+1
1
Qualx(pn/qn) < tends to 0.
dn+1 |
With x =7, we get
n|-2 -1]0 1 2 3 4
an 3 7 15 1 292
pn| O 1|3 22 333
gn| 1 0 |1 7 106
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Convergents are excellent approximations

Proposition

For all n=0, Wehave—< x—& <
qn(qn+Qn+1) dn qnqn+1
1
Qualx(pn/qn) < tends to 0.
dn+1 |
With x =7, we get
n|-2 -1]0 1 2 3 4
an 3 7 15 1 292
pn| O 1 |3 22 333 355
g 1 0 |1 7 106 113

Nicolas Mascot
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Convergents are excellent approximations

Proposition

1
For all n=0, we have —— <

qn(qn + Qn+1)

Corollary
1

tends to 0.

Qualx(Pn/qn) <

n+1

With x =7, we get
8] = 3

b4 3.14159265358979- - -
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Convergents are excellent approximations

Proposition

For all n=0, we have ——M <
qn(qn+Qn+1)

an qnqn+1

Corollary

Qualy(pn/qn)

N
=
A\

tends to 0.

dn+1

Example

With x =7, we get

3,7] 3.14285714285714

/2 3.14159265358979- - -
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Convergents are excellent approximations

Proposition

For all n=0, we have ——M <
qn(qn+Qn+1)

an qnqn+1

Corollary

Qualy(pn/qn)

N
=
A\

tends to 0.

dn+1

| A

Example
With x =7, we get

3,7,15] = 3.14150043396226 - -

106

T 3.14159265358979- - -
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Convergents are excellent approximations

Proposition

For all n=0, we have ——M <
qn(qn+Qn+1)

an qnqn+1

Corollary

Qualy(pn/qn)

N
=
A\

tends to 0.

dn+1

Example

With x =7, we get

[3,7,15,1] 3.14159292035398 - -

113

T 3.14159265358979- - -
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Convergents are excellent approximations

tends to 0.

Qualx(pn/qn) <
dn+1

Corollary

For any x e R\ Q, we can find p,q € Z such that Qual(p/q) is
arbitrarily small.

Counter-example

Not true if x € Q! Indeed, if x=a/b, then unless p/q = x,

a lga—pb| 1
Qua|x(P/Q)ZQ‘E—§':%ZE-

v

Nicolas Mascot Introduction to number theory



Convergents are the best!

Let xe R\Q, and let p,qgeZ.
For all n=0, if g < q,, then Qualy(p/q) > Qualy(pn/qn) unless

P/4=Pn/Gqn.
Conversely, if Qualy(p/q) < 2lq, then p/q = pn/qn for some n.
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Convergents are the best!

Theorem
For all n=0, if g < q,, then Qualy(p/q) > Qualy(pn/qn) unless
P/4 = Pn/dn-

Proof.
Fix n, let g < qn, and suppose p/q # pn/qn. The linear system
{ Pny +Pn-1Z = p

gny tqn-1Z2=4q
in y,z can be written AX =B, where X = (%), B=(§) e Z?,
and A= (5" B-1) e GLy(Z), so its only solution X = A~1B lies
in Z2. We can assume y,z both nonzero: if y =0 then
P/q=pPn-1/qn-1 is less good, and if z=0 then p/q=pn/qn.
Finally, y and z have opposite signs since g = gny + gp-12, SO
y(gnx —pn) and z(gn-1x — pn-1) have the same sign. Thus

lgx — pl =1y (qgnx — pn)l +12(gn-1x — pn-1)I. O
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Convergents are the best!

Conversely, if Qualy(p/q) < 5z, then p/q = pn/qn for some n.

Proof.

Write qx—p:eg/q with e = +1 and 9(—:(0, ) o 50 p+e;79/q

Expand p/q=[ap, -, ap], and let p;,/qp, be its convergents.
WLOG gcd(p,q) =1, so p,,=p and g}, =

If &), >1, then also p/q = [36, -+,an,—1,1], so we may choose
the parity of n S0 that g,p/_; —pnq,_, =(-1)"=e.

Define y = 5 - ;71 = [bo, b1,--+]; then by =yl =1, and

YPn+ P4
[a,’...’a’,bo’bl’...]:[a,’...’a’,y]:—
o T yah+ g

9 Ph . —Pndn_1+qnP_
(i i SR i i 1)L B
= = =X.
qn/9 —qn_1+4q, 4 qn/0 q
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Continued fractions
attached to
quadratic irrationals

Nicolas Mascot Introduction to number theory



Quadratic irrationals

Definition

Fix d € Z not a square, so Vd ¢ Q, and introduce
Z[Vd]={a+bVd | a,bez}, Q[Vd]={a+bVd|ahbeQ.
Given a = a+ bv'd € Q[Vd], we define
a=a-bVdeQ[Vd], N(a)=aa =a*>-db’ € Q.

Z[Vd] is a ring: if a, € Z[Vd], then a+B,a—B,aBfeZ[Vd].
Q[V/d] is a field: if a, e Q[Vd], then a+f,aB,a/BeQ[Vd].

a+bVd)=(ata)+(btb)Vd.
+b\/3) (a+bb’) +(ab' + ba')Vd.

Introduction to number theory



Properties of the norm

Lemma

Fix d € Z not a square, and let a, f € Q[Vd].
© N(af)=N(a)N(p). -
@ ap=a+P, a-p=a-p ap-ah, a/B=a/b.

Q If a=a+bVd, then

a bd
b

and det(uqp) = det(pq o pp) = det(ua)det(pﬁ).
@ Clear for a+ 6.
@p = N(a) N(B) _ N(a)N(p) _ foaﬁﬁ) = ap;

a B ap

< e[ O — Q)

N(a) =

same proof for a/p. O




Quadratic irrationals

Definition

A quadratic irrational is an element of Q[Vd]\ Q for some
a+bvd
c

d€Zs», i.e. of the form a = eR\Q with a,b,ceZ

with b,c #0.

Theorem (Euler + Lagrange)

Let xe R\ Q. Then x is a quadratic irrational iff. its continued
fraction expansion is ultimately periodic.
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Quadratic irrationals

Theorem (Euler + Lagrange)

Let xe R\ Q. Then x is a quadratic irrational iff. its continued
fraction expansion is ultimately periodic.

— 103+v1297
[1,2,3,4,5,3,4,5,3,4,5,---]:[1,2,3,4,5]:+9—7.

V6=02,2,4,2,4,2,424,--]=[224.

Counter-example
7=[3,7,151,292,1,1,1,2,1,3,1,14,2,1,---].
v2=[1,3,1,51,1,4,1,1,8,1,14,1,10,2,---].
e=[2,12114,116,118,1,110,1,-].
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1
g 1 0
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pnl 0O 113
gp| 1 0 |1
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0O 1|3 13
go| 1 0|1 4
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0O 1|3 13 68
g1 1 0|1 4 21
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1|3 13 68 68y+13
go| 1 0 |1 4 21 2ly+4
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1|3 13 68 68y+13
go| 1 0 |1 4 21 2ly+4

1 2+411297
_szl 2—64y—13=0~=> :u_

So y =
Y=oy ea T Y 21
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1 (3 13 68 68y+13
gn| 1 0|1 4 21 2ly+4
68y + 13 ) 32+/1297
= — 21 —64y—13= = .
S0y =S g A 0y =13=0y 21
n|-2 -1/0 1 2
Finally, x =[1,2,y], an L2y

pn| 01 whence
n

gr| 1 O
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1|3 13 68 68y+13
gn| 1 0|1 4 21 2ly+4
68y + 13 5 32+ V1297
So m 21y —64y—13—0Wy—T
n|[-2 -1/0 12
Finally, x =[1,2,y] an L2y whence
1 )<=y 1 pn 0 1 1
agn| 1 0|1
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| 0 1 |3 13 68 68y+13
gn| 1 0|1 4 21 2ly+4
68y + 13 5 32+ V1297
SO_y m 21y —64y—13—0Wy—T
n|[-2 -1/0 12
Finally, x =[1,2,y] an L2y whence
' 7 pp 00113
gn| 1 0|1 2
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| O 1|3 13 68 68y+13
gp| 1 0|1 4 21 2ly+4
68y + 13 5 32+ V1297
Soy—mley —64y—13—0Wy—T
n|-2 -1/0 1 2
. an 1 2y
Finally, x=11,2,y], whence

pnl 0 1|1 3 3y+1
| 1 0|1 2 2y+1,
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Ultimately periodic = Quadratic irrational

Let x=[1,2,3,4,5]. Introduce y =[3,4,5]=[3,4,5, y|.
n|-2 -1]01 2 3

an 34 5 vy
pn| O 1|3 13 68 68y+13
gp| 1 0|1 4 21 2ly+4
68y + 13 5 32+v1297
n|-2 -1/0 1 2
. an 1 2y
Finally, x=11,2,y], whence

pnl 0 1|1 3 3y+1
| 1 0|1 2 2y+1,

X

_ 3y+1 _ (117+3v1297)/21 _ (117+3v1297)(85-2v1297) _ 103++/1297
T 2y+1 7 (85+2V1297)/21 ~  (85+2v/1297)(85-2v/1297) 97 -
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Ultimately periodic = Quadratic irrational

Suppose x = [ag,a1,-*+,ar, by, b1,--+, bs].
Let y= [bo’bly"' ,bs] = [boybl)"' )bS)_y]-

YPs + Ps—1

satisfies an equation of degree 2
Yqs+Qqs-1

Then y =
—B+\/_
oy = =BEVA ¢ Q[\/A]. Besides, y e R so A>0.

So x =lag,a1, " ,any] = YPrt Pro1 @[\/_]
Yqr+qgr-1 o
and x ¢ Q since its continued fraction expansion is infinite. [
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Quadratic irrational = Ultimately periodic

Let x = #H be a quadratic irrational.

Change the sign of a,b,c ~ WLOG b>0.

a+Vb2d _ alc|+vb3c?d _ R+vVD
Then x = #2225 = 5

clel
where R = a|c|, S = c|c| satisfy
R,S€7, S#0, and D— R? = b?>c?d —a°c? is divisible by S.

Imagine we begin the continued fraction: we get x; = —1LXJ

1 1 _ 1 R'+vD R’+\/_

- R+m_LXJ T R-Ix/S+VD = -R'+vD = (-R'+VD)(R'+VD)
5 S S 5

where R'=|x]S-R, S’ = D—SRf2 satisfy again R',S' €7,
S'#0, and S'| (D - R"?) since SS'=D - R".

Thus for all n=0, x, = Ry +‘/_ with R,,S5,€Z and D fixed;
furthermore S,5,+1 =D - Rr21+1
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Quadratic irrational = Ultimately periodic

Thus for all >0, x, = B2/ with R, S, €Z and D fixed;

n

furthermore S,S,.1 =D — R,%Jrl.

XnPn-11+Pn-2
XnQn-11+qn-2
XXnQn-1+Xqn-2 = XpPn-1+ Pn-2

X — Pn-1
XAqn-1—Pn-1 _ qn-1 dn-1

Now x =[ag,a1, ", an-1,Xn] = . Solve for x,:

~ Xn = — — .
X4n-2 — Pn-2 qn-2 X — Pn-2
qn-2
v _ Pn-1
. Rn=vD __ Gn-1 %" qos
Take conjugates: ————— =X, =— — s
Sn gn-2 x — ==
qn-2
X— ani X —X
But when n— 0o, — p”_z — — =1, so for n large enough,
X — —q”‘2 X—X
o

2VD _

=xp—X,>1>0~5,>0.

Xp <0~
n
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Quadratic irrational = Ultimately periodic

For n large enough, S, > 0; besides, $,S,41=D—-R2 ;.
Thus for n large enough, |R,l < VD and S, <D.

~ The pair (R, Sp) takes finitely many values

~+ There exist n,m >0 such that

Rosm+VD R,+VD _

5n+m 5n+m

Xn+m =

Xn»

and the process is periodic from there on. ]

Nicolas Mascot Introduction to number theory



Quadratic irrational = Ultimately periodic

Let x = v6. We compute

n| 0| 1 | 2 | 3
Xn | V6
dn
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Quadratic irrational = Ultimately periodic

Let x = v6. We compute

n| 0| 1 | 2 | 3
x, | V6 ﬁ:%;/g
an| 2
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Quadratic irrational = Ultimately periodic

Let x = v6. We compute

n| 0| 1 | 2 | 3
Xn \/6 \/(_;l—2 = 2-}_2\/6 2+2\/15_2 = 2 + \/6
an| 2 2
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Quadratic irrational = Ultimately periodic

Let x = v6. We compute

n| 0| 1 | 2 | 3

1 _2+/6 1 _ 1L _
xn | V8| 5= 25 5 24V | s =n
an| 2 2 4
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Quadratic irrational = Ultimately periodic

Let x = v6. We compute

n| 0| 1 | 2 | 3

1 _2+/6 1 _ 1L _
xn | V8| 5= 25 5 24V | s =n
an| 2 2 4

So the process repeats itself from there on.

~V6=v6=1[2,2,4,2,4,2,4,2,4,---]=[2,2,4].
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The Pell-Fermat equation
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Fix d €N, not a square.
We want to solve the Diophantine equation
x> —dy?=1 (x,yeZz)

Trivial solutions: x=+1, y =0. Are there more?

If d=n? were a square, then
x% —dy? = x2—(ny)? = (x+ny)(x - ny) ~ not interesting.

d=2: are solutions of x> —2y?=1.

d =61: The smallest solution to x> =61y =1 is
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Fix d €N, not a square.
We want to solve the Diophantine equation
x> —dy?=1 (x,yeZz)

Trivial solutions: x=+1, y =0. Are there more?

If d=n? were a square, then
x% —dy? = x2—(ny)? = (x+ny)(x - ny) ~ not interesting.

d=2: (+3,+2), (£17,+12) are solutions of x> —2y? = 1.

d =61: The smallest solution to x> =61y =1 is
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Fix d €N, not a square.
We want to solve the Diophantine equation
x> —dy?=1 (x,yeZz)

Trivial solutions: x=+1, y =0. Are there more?

If d=n? were a square, then
x% —dy? = x2—(ny)? = (x+ny)(x - ny) ~ not interesting.

d=2: (+3,+2), (£17,+12) are solutions of x> —2y? = 1.

d =61: The smallest solution to x> =61y =1 is
x=1766319049, y=226153980.
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Interpretation: units in real quadratic fields

Recall that Z[Vd] = {x+yVd | x,y € Z} is a ring.

Lemma

Let a € Z[Vd]. Then a€Z[Vd]*, ie 1/aez[Vd], iff.
N(a)ez*, ie. N(a) = +1.

If a,Be Z[\/a] are such that af =1, then

N(a)N(B) = N(ap) = N(1)=1.

Conversely, if N(a) = +1, then
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Interpretation: units in real quadratic fields

Recall that z[\/H] ={x+yVd | x,y€Z}is a ring.

Let a € Z[Vd]. Then a€Z[Vd]*, ie 1/aeZ[Vd], iff.
N(a)ez*, ie. N(a) = +1.

Relation with the Pell-Fermat equation:
N(x+yVd) = (x+yVd)(x-yVd) = x> —dy?,

so x?—dy?=1 < x+yVd is a unit of norm +1.

Trivial solutions x = +1, y =0 «— trivial units +1 € Z[Vd]*.
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Dirichlet's theorem

Theorem (Dirichlet; accepted without proof)

Let d €N, not a square. There exists a fundamental unit
g€ Z[Vd]*, € # +1 such that
Z[Vd]* = {xe" | ne z).

e£+1,s0 |e|#1, so €"#=+1 unless n=0; thus #Z[\/a]X = 00.
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Dirichlet's theorem

Theorem (Dirichlet; accepted without proof)

Let d €N, not a square. There exists a fundamental unit
g€ Z[Vd]*, € # +1 such that

Z[Vd]* = {+e" | nezZ}.

We could replace € with +e*!.
As N(e)=+1,ife=a+ bv/d, then
e l=+N(e)/e =+ =+(a— bVd), hence +e*! = +a+ bVd.

It is customary to choose a,b> 0, so that £ > 1.

Then for ne N, we have " = a, + b,vd with a,, b, €N and
increasing, so € corresponds to the smallest solution

to x> —dy? = +1.
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Dirichlet's theorem

Theorem (Dirichlet; accepted without proof)

Let d €N, not a square. There exists a fundamental unit
g€ Z[Vd]*, € # +1 such that

Z[Vd]* = (" | neZ}.

Let u=+e"€Z[Vd]*. Then N(u)=N(+1)N(g)" = N(e)", as
N(-1)=+1. Thus

o If N(e)=+1, then N(u
~~ Solutions of x?—dy

o If N(e)=-1, then N(u
~+ Solutions of x2—dy

~—

=41 forall n
=1« {+£" | neZ}.
=41 iff. nis even

N

~—

N

=1 — {+€2" | ne 7},

For all d €N not square, x*— dy2 =1 has oo solutions.
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Solving Pell-Fermat

If x=a>0, y=b>0is a solution to x2—dy2:i1, then
a2

2V |m-d 2w 1
%+\/3’ 24+vd b(a+bVd) b(a+bVd)

g—\/ﬁ‘:

is very small, so a/b approximates v/d.

More specifically, since a=Vdb2+1=by/d—1/b2=b, we

have

Qual\/g(a/b):la—b\/glz 1 L 1

< <—,
a+bvd a+b 2b

so a/b is a convergent of V/d!

~+ All the solutions to x2 — dy2 =41, in particular the
fundamental one, are among the convergents of V/d.
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Example: x> -3y?=1

Continued fraction expansion of v/3:

n Xn an Pn Q4n P%_3qz

-2 0 1

-1 1 0

0 V3 1 1 1 -2x
1 _ 1+V3

llag=%2 1 2 1 +1v

~~ The fundamental unit of Z[v/3] is € =2+V/3, norm +1.

~» The fundamental solution to x> —=3y?=11is x=2, y=1.

Other solutions:
o (2+V3)?2=T7+4V3 ~ x=7, y=4.
o (2+v3)3=26+15V3 ~» x=26, y=15.
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Example: x> =2y =1

Continued fraction expansion of v/2:

n| x» an pn qn P2—2q3
2 0 1
-1 1 0

0/v2 1 1 1 -1v

~~ The fundamental unit of Z[v2] is € =1+ /2, norm —1.

~ As (1++v/2)? =3+2V2, the fundamental solution
tox?—2y?=1isx=3, y=2.

Other solutions:
o (1+V2)*=(3+V2)2=17+12V2 ~ x=17, y=12.
o (1+v2)6=(3+2v2)3=99+70v2 ~» x=99, y=70.
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