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Concept & Notations
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Continued fractions

Given x ∈R, recall that bxc =max {n ∈Z | nÉ x}. Thus

b3c = bπc = b3.99c = 3.

To a sequence of integers a0,a1,a2, · · · ∈N, we attach the
continued fractions

[a0,a1,a2, · · · ,an]= a0+
1

a1+
1

a2+
1

.. .+ 1
an

∈Q.
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Continued fractions
To a sequence of integers a0,a1,a2, · · · ∈N, we attach the
continued fractions

[a0,a1,a2, · · · ,an]= a0+
1

a1+
1

a2+
1

.. .+ 1
an

∈Q.

Example

[2,3,5,7]= 2+ 1

3+ 1

5+ 1
7

= 266
115

.
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Continued fractions

To a sequence of integers a0,a1,a2, · · · ∈N, we attach the
continued fractions

[a0,a1,a2, · · · ,an]= a0+
1

a1+
1

a2+
1

.. .+ 1
an

∈Q.

Remark

[a0,a1, · · · ,an−1,an]= [a0,a1, · · · ,an−1+ 1
an

].
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Continued fractions

To a sequence of integers a0,a1,a2, · · · ∈N, we attach the
continued fractions

[a0,a1,a2, · · · ,an]= a0+
1

a1+
1

a2+
1

.. .+ 1
an

∈Q.

We will see that lim
n→+∞[a0,a1,a2, · · · ,an] exists; we will then

denote it by
[a0,a1,a2, · · · ] ∈R.
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Continued fraction expansion
of a real number
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The continued fraction attached to a real number
Let x ∈R be fixed. We construct two sequences

x0,x1,x2, · · · ∈R and a0,a1,a2, · · · ∈Z
by setting x0 = x and inductively an = bxnc and xn+1 = 1

xn−an . If
xn = an for some n, we stop.
Note that xn > 1 and an ≥ 1 for all n≥ 1.

Example
For x =π, we find

x0 = x =π= 3.14159 . . . ,
a0 = bx0c = 3, x1 = 1

x0−a0
= 1

0.14159... = 7.06251 . . . ,

a1 = bx1c = 7, x2 = 1
x1−a1

= 1
0.06251... = 15.99659 . . . ,

a2 = bx2c = 15, x3 = 1
x2−a2

= 1
0.99659... = 1.00341 . . . ,

a3 = bx3c = 1, x4 = 1
x3−a3

= 1
0.00341... = 292.63459 . . . ,

a4 = bx4c = 292, and so on.
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The continued fraction attached to a real number
Theorem
This process stops if x ∈Q, and goes on for all n ∈N if
x ∈R\Q.

Proof.

Suppose x = A
B ∈Q. Then x0 = A

B , a0 =
⌊
A
B

⌋
=Q,

x1 = 1
x0−a0

= 1
A
B−Q = B

A−BQ = B
R , where A=BQ+R is the

Euclidean division of A by B . So the continued fraction
expansion follows the steps of the Euclidean algorithm for
gcd(A,B). After finitely many steps, we get remainder 0,
so xn ∈N, so an = xn, so we stop.
Conversely,
xn = an =⇒ xn ∈Q=⇒ xn−1 = 1

xn
+an−1 ∈Q=⇒ ·· · =⇒ x0 ∈Q,

so this cannot happen if x ∈R\Q.
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The continued fraction attached to a real number

Theorem
This process stops if x ∈Q, and goes on for all n ∈N if
x ∈R\Q.

Example

For x = 23
9 ∈Q, we find

x0 = x = 23
9 ,

a0 = bx0c = 2, x1 = 1
x0−a0

= 1
23
9 −2

= 9
5 ,

a1 = bx1c = 1, x2 = 1
x1−a1

= 1
9
5−1

= 5
4 ,

a2 = bx2c = 1, x3 = 1
x2−a2

= 1
5
4−1

= 4,

a3 = bx3c = x3 STOP.
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Rationals as continued fractions

Theorem
For all nÊ 0, we have

[a0,a1, · · · ,an−1,xn]= x .

Proof.
Induction on n.

For n= 0, [x0]= x0 = x , OK.
If true for n, then

[a0,a1, · · · ,an,xn+1]= [a0,a1, · · · ,an−1,an+1/xn+1]

= [a0,a1, · · · ,an−1,xn]= x .

Nicolas Mascot Introduction to number theory



Rationals as continued fractions

Theorem
For all nÊ 0, we have

[a0,a1, · · · ,an−1,xn]= x .

Corollary
Every x ∈Q can be expressed as a finite continued fraction.

Example

23
9

= [2,1,1,4]= 2+ 1

1+ 1

1+ 1
4

.
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Convergents
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Two more sequences
Definition
To a sequence of integers a0,a1,a2, · · · ∈N, we attach two
sequences p−2,p−1,p0,p1, · · · ∈N and q−2,q−1,q0,q1, · · · ∈N by

p−2 = 0, p−1 = 1, pn = anpn−1+pn−2 for n≥ 0;
q−2 = 1, q−1 = 0, qn = anqn−1+qn−2 for n≥ 0.

Thus for example p0 = a0, q0 = 1; and p1 = a1a0+1, q1 = a1.

Remark
If x > 1, then an ≥ 1 for all n, so pn,qn Ê Fn for all n≥ 0,
where Fn is the Fibonacci sequence defined by

F0 = F1 = 1, Fn = Fn−1+Fn−2.
In particular pn,qn →+∞; more specifically

pn,qn ≥ Fn ∼
(
1+p

5
2

)n−1

.
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The convergents

Definition
The quantities [a0,a1, · · · ,an] (n≥ 0) are called the convergents
of the continued fraction.

Theorem

For all n≥ 0, we have [a0,a1, · · · ,an]= pn
qn

.
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The convergents
Theorem

For all n≥ 0, we have [a0,a1, · · · ,an]= pn
qn

.

Proof.
Induction on n.

For n= 0, p0/q0 = a0/1= [a0]  OK.
Suppose it is true for n. Define a new sequence a′m for
m≤ n by a′0 = a0, · · · ,a′n−1 = an−1,a′n = an+ 1

an+1
, and the

corresponding p′m, q′m; then p′m = pm for m< n whereas
p′n = a′np′n−1+p′n−2 = (an+ 1

an+1
)pn−1+pn−2 = pn+ pn−1

an+1
,

and similarly for the qm. Thus
[a0,a1, · · · ,an,an+1]= [a0,a1, · · · ,an+ 1

an+1
]= [a′0,a′1, · · · ,a′n]

Ind.= p′n
q′n

=
pn+ pn−1

an+1

qn+ qn−1
an+1

= an+1pn+pn−1

an+1pn+pn−1
= pn+1

qn+1
.
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The convergents

Theorem

For all n≥ 0, we have [a0,a1, · · · ,an]= pn
qn

.

Corollary
For all y > 0 and for all n,

[a0,a1, · · · ,an,y ]= ypn+pn−1

yqn+qn−1
.
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Identities between successive convergents
Theorem
For all n≥ 0, we have
qnpn−1−pnqn−1 = (−1)n and qnpn−2−pnqn−2 = (−1)n−1an.

Proof.

Let Mn =
(
an 1
1 0

)
and Xn =

(
qn pn
qn−1 pn−1

)
. As Xn =MnXn−1,

qnpn−1−pnqn−1 = det(Xn)= det(MnMn−1 · · ·M0X−1)

= det(Mn)det(Mn−1) · · ·det(M0)det(X−1)

= (−1)n+1 ∣∣0 1
1 0

∣∣= (−1)n.

In particular,
qnpn−2−pnqn−2 = (anqn−1+qn−2)pn−2− (anpn−1+pn−2)qn−2

= an(qn−1pn−2−pn−1qn−2)= (−1)n−1an.
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Identities between successive convergents

Theorem
For all n≥ 0, we have
qnpn−1−pnqn−1 = (−1)n and qnpn−2−pnqn−2 = (−1)n−1an.

Corollary
The fraction pn/qn is always in lowest terms.
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Convergence of
continued fractions
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Cheat sheet

Fix x ∈R\Q (so the continued fraction is infinite). We define
an, xn for n≥ 0 by

x0 = x ; and for n≥ 0, an = bxnc , xn+1 = 1
xn−an

;

and then pn, qn for n≥−2 by

p−2 = 0, p−1 = 1, pn = anpn−1+pn−2 for n≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1+qn−2 for n≥ 0.
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Comparison of successive convergents

Lemma
For all n≥ 0, we have pn

qn
< x if n is even, and pn

qn
> x if n is odd.

Proof.
The function y 7→ [a0, · · · ,an−1,y ] is a composition of n
reciprocals, so it is increasing if n is even, and decreasing if n
is odd.
Besides, pn

qn
= [a0, · · · ,an−1,an] whereas x = [a0, · · · ,an−1,xn],

and an = bxnc < xn.

Lemma

The subsequence
p2n

q2n
is increasing.

The subsequence
p2n+1

q2n+1
is decreasing.

Proof.
pn
qn

− pn−2

qn−2
= pnqn−2−qnpn−2

qnqn−2
= (−1)nan

qnqn−2
.
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Comparison of successive convergents

Lemma
For all n≥ 0, we have pn

qn
< x if n is even, and pn

qn
> x if n is odd.

Lemma

The subsequence
p2n

q2n
is increasing.

The subsequence
p2n+1

q2n+1
is decreasing.

Proof.
pn
qn

− pn−2

qn−2
= pnqn−2−qnpn−2

qnqn−2
= (−1)nan

qnqn−2
.
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Convergence of continued fractions

Theorem

lim
n→+∞[a0,a1, · · · ,an]= x .

Proof.
We have proved that

p2n

q2n
< p2n+2

q2n+2
< x < p2n+1

q2n+1
< p2n−1

q2n−1
.

This shows that
p2n

q2n
→ `0 ≤ x , and

p2n+1

q2n+1
→ `1 ≥ x .

But
pn
qn

−pn−1

qn−1
= pnqn−1−pn−1qn

qnqn−1
= (−1)n−1

qnqn−1
→ 0 `0 = `1 = x .
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Convergence of continued fractions

Theorem

lim
n→+∞[a0,a1, · · · ,an]= x .

Corollary
Every x ∈R can be expressed as a continued fraction.

Remark
If x 6∈Q, this expression is unique: If x = [b0,b1, · · · ]
where bn ∈N, then 0≤ x −b0 =

1

b1+
1
.. .

< 1
b1

≤ 1,

so necessarily b0 = bxc, etc.
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Diophantine approximation

Nicolas Mascot Introduction to number theory



The quality of a rational approximation

Fix x ∈R\Q, and define as usual an, pn, qn.
Since x 6∈Q, we have x 6= p/q for all p,q ∈Z. But as Q is dense
in R, we can choose p,q so that

∣∣∣x − p
q

∣∣∣ is as small as we want.

Example

For π= 3.1415926535 . . . , we have
∣∣π− 314

100

∣∣< 10−2,∣∣π− 314159
100000

∣∣< 10−5, etc.

But can we achieve
∣∣∣x − p

q

∣∣∣ small with p, q not too large?
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The quality of a rational approximation

Fix x ∈R\Q, and define as usual an, pn, qn.
Since x 6∈Q, we have x 6= p/q for all p,q ∈Z. But as Q is dense
in R, we can choose p,q so that

∣∣∣x − p
q

∣∣∣ is as small as we want.

But can we achieve
∣∣∣x − p

q

∣∣∣ small with p, q not too large?

Definition (Unofficial)

The quality of the approximation p/q of x is

Qualx(p/q)= q

∣∣∣∣x − p

q

∣∣∣∣= |qx −p|

The smaller Qualx(p/q), the better the approximation. So
how small can Qualx(p/q) be?
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Convergents are excellent approximations
Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Proof.
We know that p2n

q2n
< p2n+2

q2n+2
< x < p2n+1

q2n+1
< p2n−1

q2n−1
, so for all n,∣∣∣∣x − pn

qn

∣∣∣∣< ∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣= |pn+1qn−pnqn+1|
qnqn+1

= |±1|
qnqn+1

,

but also
∣∣∣∣x − pn

qn

∣∣∣∣> ∣∣∣∣pn+2

qn+2
− pn
qn

∣∣∣∣= |pn+2qn−pnqn+2|
qnqn+1

= |±an+2|
qnqn+2

= an+2

qn(an+2qn+1+qn)
= 1
qn(qn+1+ qn

an+2
)
> 1
qn(qn+qn+1)

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1

3 22 333 355

qn 1 0

1 7 106 113
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1 3

22 333 355

qn 1 0 1

7 106 113
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1 3 22

333 355

qn 1 0 1 7

106 113
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1 3 22 333

355

qn 1 0 1 7 106

113
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

n −2 −1 0 1 2 3 4
an 3 7 15 1 292
pn 0 1 3 22 333 355
qn 1 0 1 7 106 113
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

[3] = 3

π = 3.14159265358979 · · ·
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

[3,7] = 22
7

= 3.14285714285714

π = 3.14159265358979 · · ·
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

[3,7,15] = 333
106

= 3.14150943396226 · · ·

π = 3.14159265358979 · · ·
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Convergents are excellent approximations

Proposition

For all n≥ 0, we have
1

qn(qn+qn+1)
<

∣∣∣∣x − pn
qn

∣∣∣∣< 1
qnqn+1

.

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Example
With x =π, we get

[3,7,15,1] = 355
113

= 3.14159292035398 · · ·

π = 3.14159265358979 · · ·
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Convergents are excellent approximations

Corollary

Qualx(pn/qn)<
1

qn+1
tends to 0.

Corollary
For any x ∈R\Q, we can find p,q ∈Z such that Qualx(p/q) is
arbitrarily small.

Counter-example
Not true if x ∈Q! Indeed, if x = a/b, then unless p/q = x ,

Qualx(p/q)= q

∣∣∣∣ab − p

q

∣∣∣∣= |qa−pb|
b

≥ 1
b

.
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Convergents are the best!

Theorem
Let x ∈R\Q, and let p,q ∈Z.
For all n≥ 0, if q ≤ qn, then Qualx(p/q)>Qualx(pn/qn) unless
p/q = pn/qn.
Conversely, if Qualx(p/q)< 1

2q , then p/q = pn/qn for some n.
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Convergents are the best!
Theorem
For all n≥ 0, if q ≤ qn, then Qualx(p/q)>Qualx(pn/qn) unless
p/q = pn/qn.

Proof.
Fix n, let q ≤ qn, and suppose p/q 6= pn/qn. The linear system{

pny +pn−1z = p
qny +qn−1z = q

in y ,z can be written AX =B , where X = (yz ), B = (pq ) ∈Z2,
and A= (pn pn−1

qn qn−1 ) ∈GL2(Z), so its only solution X =A−1B lies
in Z2. We can assume y ,z both nonzero: if y = 0 then
p/q = pn−1/qn−1 is less good, and if z = 0 then p/q = pn/qn.
Finally, y and z have opposite signs since q = qny +qn−1z , so
y(qnx −pn) and z(qn−1x −pn−1) have the same sign. Thus

|qx −p| = |y(qnx −pn)|+ |z(qn−1x −pn−1)|.
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Convergents are the best!
Theorem

Conversely, if Qualx(p/q)< 1
2q , then p/q = pn/qn for some n.

Proof.
Write qx −p = εθ/q with ε=±1 and θ ∈ (0, 1

2), so x = p+εθ/q
q .

Expand p/q = [a′0, · · · ,a′n], and let p′m/q′m be its convergents.
WLOG gcd(p,q)= 1, so p′n = p and q′n = q.
If a′n > 1, then also p/q = [a′0, · · · ,a′n−1,1], so we may choose
the parity of n so that q′np′n−1−p′nq′n−1 = (−1)n = ε.
Define y = 1

θ
− q′

n−1
q′
n

= [b0,b1, · · · ]; then b0 = byc ≥ 1, and

[a′0, · · · ,a′n,b0,b1, · · · ]= [a′0, · · · ,a′n,y ]= yp′n+p′n−1
yq′n+q′n−1

=
p′n
θ
−p′n

q′
n−1
q′
n

+p′n−1

q′n/θ−q′n−1+q′n−1
=

p′n
θ
+ −p′nq′

n−1+q′
np

′
n−1

q′
n

q′n/θ
= p+εθ/q

q
= x .
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Continued fractions
attached to

quadratic irrationals
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Quadratic irrationals

Definition

Fix d ∈Z not a square, so
p
d 6∈Q, and introduce

Z[
p
d ]= {a+b

p
d | a,b ∈Z}, Q[

p
d ]= {a+b

p
d | a,b ∈Q}.

Given α= a+b
p
d ∈Q[pd ], we define

α= a−b
p
d ∈Q[

p
d ], N(α)=αα= a2−db2 ∈Q.

Proposition

Z[
p
d ] is a ring: if α,β ∈Z[pd ], then α+β,α−β,αβ ∈Z[pd ].

Q[
p
d ] is a field: if α,β ∈Q[pd ], then α±β,αβ,α/β ∈Q[pd ].

Proof.

(a+b
p
d)± (a′+b′

p
d)= (a±a′)+ (b±b′)

p
d .

(a+b
p
d)(a′+b′

p
d)= (aa′+bb′d)+ (ab′+ba′)

p
d .

α/β= (αβ)/(ββ)= (αβ)/N(β).
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Properties of the norm
Lemma

Fix d ∈Z not a square, and let α,β ∈Q[pd ].
1 N(αβ)=N(α)N(β).
2 α+β=α+β, α−β=α−β, αβ=αβ, α/β=α/β.

Proof.
1 If α= a+b

p
d , then

N(α)=
∣∣∣∣a bd
b a

∣∣∣∣= det

(
µα :

Q[
p
d ] −→ Q[

p
d ]

x 7−→ αx

)
;

and det(µαβ)= det(µα ◦µβ)= det(µα)det(µβ).
2 Clear for α±β.
αβ= N(α)

α

N(β)
β

= N(α)N(β)
αβ

= N(αβ)
αβ

=αβ;
same proof for α/β.
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Quadratic irrationals

Definition

A quadratic irrational is an element of Q[
p
d ]\Q for some

d ∈Z≥2, i.e. of the form α= a+b
p
d

c
∈R\Q with a,b,c ∈Z

with b,c 6= 0.

Theorem (Euler + Lagrange)

Let x ∈R\Q. Then x is a quadratic irrational iff. its continued
fraction expansion is ultimately periodic.
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Quadratic irrationals

Theorem (Euler + Lagrange)

Let x ∈R\Q. Then x is a quadratic irrational iff. its continued
fraction expansion is ultimately periodic.

Example

[1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, · · · ]= [1, 2, 3, 4, 5]= 103+p
1297

97
.

p
6= [2, 2, 4, 2, 4, 2, 4, 2, 4, · · · ]= [2, 2, 4].

Counter-example
π= [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, · · · ].
3p2= [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, · · · ].
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, · · · ].
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Ultimately periodic =⇒ Quadratic irrational

Let x = [1, 2, 3, 4, 5]. Introduce y = [3, 4, 5]= [3, 4, 5, y ].

n −2 −1 0 1 2 3
an 3 4 5 y
pn 0 1

3 13 68 68y +13

qn 1 0

1 4 21 21y +4

So y = 68y +13
21y +4

 21y2−64y −13= 0 y = 32+p
1297

21
.

Finally, x = [1,2,y ],

n −2 −1 0 1 2
an 1 2 y
pn 0 1

1 3 3y +1

qn 1 0

1 2 2y +1,

whence

x = 3y+1
2y+1 = (117+3

p
1297)/21

(85+2
p

1297)/21
= (117+3

p
1297)(85−2

p
1297)

(85+2
p

1297)(85−2
p

1297)
= 103+p1297

97 .
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Ultimately periodic =⇒ Quadratic irrational

Suppose x = [a0,a1, · · · ,ar ,b0,b1, · · · ,bs ].

Let y = [b0,b1, · · · ,bs ]= [b0,b1, · · · ,bs ,y ].

Then y = yps +ps−1

yqs +qs−1
satisfies an equation of degree 2

 y = −B±p∆
2A ∈Q[p∆]. Besides, y ∈R so ∆> 0.

So x = [a0,a1, · · · ,ar ,y ]= ypr +pr−1

yqr +qr−1
∈Q[

p
∆],

and x 6∈Q since its continued fraction expansion is infinite.
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Quadratic irrational =⇒ Ultimately periodic

Let x = a+bpd
c be a quadratic irrational.

Change the sign of a,b,c  WLOG b > 0.

Then x = a+
p
b2d
c = a|c |+

p
b2c2d

c |c | = R+pD
S ,

where R = a|c |,S = c |c | satisfy
R ,S ∈Z, S 6= 0, and D−R2 = b2c2d −a2c2 is divisible by S .

Imagine we begin the continued fraction: we get x1 = 1
x−bxc

= 1
R+pD

S −bxc
= 1

R−bxcS+pD
S

= 1
−R′+pD

S

= R ′+pD
(−R′+pD)(R′+pD)

S

= R ′+pD
S ′ ,

where R ′ = bxcS −R , S ′ = D−R ′2
S satisfy again R ′,S ′ ∈Z,

S ′ 6= 0, and S ′ | (D−R ′2) since SS ′ =D−R ′2.

Thus for all n≥ 0, xn = Rn+
p
D

Sn
with Rn,Sn ∈Z and D fixed;

furthermore SnSn+1 =D−R2
n+1.
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Quadratic irrational =⇒ Ultimately periodic
Thus for all n≥ 0, xn = Rn+

p
D

Sn
with Rn,Sn ∈Z and D fixed;

furthermore SnSn+1 =D−R2
n+1.

Now x = [a0,a1, · · · ,an−1,xn]= xnpn−1+pn−2
xnqn−1+qn−2

. Solve for xn:

xxnqn−1+xqn−2 = xnpn−1+pn−2

 xn =−xqn−1−pn−1

xqn−2−pn−2
=−qn−1

qn−2

x − pn−1
qn−1

x − pn−2
qn−2

.

Take conjugates:
Rn−

p
D

Sn
= xn =−qn−1

qn−2

x − pn−1
qn−1

x − pn−2
qn−2

.

But when n→∞,
x − pn−1

qn−1

x − pn−2
qn−2

→ x −x

x −x
= 1; so for n large enough,

xn < 0 
2
p
D

Sn
= xn−xn > 1> 0 Sn > 0.
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Quadratic irrational =⇒ Ultimately periodic

For n large enough, Sn > 0; besides, SnSn+1 =D−R2
n+1.

Thus for n large enough, |Rn| ≤
p
D and Sn ≤D.

 The pair (Rn,Sn) takes finitely many values

 There exist n,m> 0 such that

xn+m = Rn+m+p
D

Sn+m
= Rn+

p
D

Sn+m
= xn,

and the process is periodic from there on.
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Quadratic irrational =⇒ Ultimately periodic

Example

Let x =p
6. We compute

n 0 1 2 3
xn

p
6

1p
6−2

= 2+p6
2

1
2+p6

2 −2
= 2+p

6 1
2+p6−4

= x1

an

2 2 4

So the process repeats itself from there on.

 
p
6=p

6= [2, 2, 4, 2, 4, 2, 4, 2, 4, · · · ]= [2, 2, 4].
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The Pell-Fermat equation
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The equation
Fix d ∈N, not a square.

We want to solve the Diophantine equation

x2−dy2 = 1 (x ,y ∈Z)
Trivial solutions: x =±1, y = 0. Are there more?

Remark
If d = n2 were a square, then
x2−dy2 = x2− (ny)2 = (x +ny)(x −ny) not interesting.

Example

d = 2:

(±3,±2), (±17,±12)

are solutions of x2−2y2 = 1.

d = 61: The smallest solution to x2−61y2 = 1 is

x = 1766319049, y = 226153980.
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Interpretation: units in real quadratic fields

Recall that Z[
p
d ]= {x +y

p
d | x ,y ∈Z} is a ring.

Lemma

Let α ∈Z[pd ]. Then α ∈Z[pd ]×, i.e. 1/α ∈Z[pd ], iff.
N(α) ∈Z×, i.e. N(α)=±1.

Proof.

If α,β ∈Z[pd ] are such that αβ= 1, then

N(α)N(β)=N(αβ)=N(1)= 1.

Conversely, if N(α)=±1, then

1
α
=±N(α)

α
=±αα

α
=±α ∈Z[

p
d ].
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Interpretation: units in real quadratic fields

Recall that Z[
p
d ]= {x +y

p
d | x ,y ∈Z} is a ring.

Lemma

Let α ∈Z[pd ]. Then α ∈Z[pd ]×, i.e. 1/α ∈Z[pd ], iff.
N(α) ∈Z×, i.e. N(α)=±1.

Relation with the Pell-Fermat equation:

N(x +y
p
d)= (x +y

p
d)(x −y

p
d)= x2−dy2,

so x2−dy2 = 1 ⇐⇒ x +y
p
d is a unit of norm +1.

Example

Trivial solutions x =±1, y = 0 ←→ trivial units ±1 ∈Z[pd ]×.
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Dirichlet’s theorem

Theorem (Dirichlet; accepted without proof)

Let d ∈N, not a square. There exists a fundamental unit
ε ∈Z[pd ]×, ε 6= ±1 such that

Z[
p
d ]× = {±εn | n ∈Z}.

Remark

ε 6= ±1, so |ε| 6= 1, so εn 6= ±1 unless n= 0; thus #Z[
p
d ]× =∞.
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Dirichlet’s theorem

Theorem (Dirichlet; accepted without proof)

Let d ∈N, not a square. There exists a fundamental unit
ε ∈Z[pd ]×, ε 6= ±1 such that

Z[
p
d ]× = {±εn | n ∈Z}.

Remark (How unique is ε?)

We could replace ε with ±ε±1.
As N(ε)=±1, if ε= a+b

p
d , then

ε−1 =±N(ε)/ε=±ε=±(a−b
p
d), hence ±ε±1 =±a±b

p
d .

It is customary to choose a,b > 0, so that ε> 1.
Then for n ∈N, we have εn = an+bn

p
d with an,bn ∈N and

increasing, so ε corresponds to the smallest solution
to x2−dy2 =±1.
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Dirichlet’s theorem

Theorem (Dirichlet; accepted without proof)

Let d ∈N, not a square. There exists a fundamental unit
ε ∈Z[pd ]×, ε 6= ±1 such that

Z[
p
d ]× = {±εn | n ∈Z}.

Let u =±εn ∈Z[pd ]×. Then N(u)=N(±1)N(ε)n =N(ε)n, as
N(−1)=+1. Thus

If N(ε)=+1, then N(u)=+1 for all n
 Solutions of x2−dy2 = 1 ←→ {±εn | n ∈Z}.
If N(ε)=−1, then N(u)=+1 iff. n is even
 Solutions of x2−dy2 = 1 ←→ {±ε2n | n ∈Z}.

Corollary

For all d ∈N not square, x2−dy2 = 1 has ∞ solutions.
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Solving Pell-Fermat

If x = a> 0, y = b > 0 is a solution to x2−dy2 =±1, then

∣∣∣a
b
−
p
d
∣∣∣=

∣∣∣ ab −p
d
∣∣∣ ∣∣∣ ab +p

d
∣∣∣∣∣∣ ab +p

d
∣∣∣ =

∣∣∣ a2

b2 −d
∣∣∣

a
b +

p
d

= |a2−db2|
b(a+b

p
d)

= 1

b(a+b
p
d)

is very small, so a/b approximates
p
d .

More specifically, since a=
p
db2±1≥ b

√
d −1/b2 ≥ b, we

have
Qualpd(a/b)= |a−b

p
d | = 1

a+b
p
d
< 1
a+b

≤ 1
2b

,

so a/b is a convergent of
p
d !

 All the solutions to x2−dy2 =±1, in particular the
fundamental one, are among the convergents of

p
d .
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Example: x2−3y 2 = 1

Continued fraction expansion of
p
3:

n xn an pn qn p2
n−3q2

n

−2 0 1
−1 1 0
0

p
3 1 1 1 −2 7

1 1p
3−1

= 1+p3
2 1 2 1 +1 3

 The fundamental unit of Z[
p
3] is ε= 2+p

3, norm +1.
 The fundamental solution to x2−3y2 = 1 is x = 2, y = 1.

Other solutions:
(2+p

3)2 = 7+4
p
3  x = 7, y = 4.

(2+p
3)3 = 26+15

p
3  x = 26, y = 15.

...
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Example: x2−2y 2 = 1

Continued fraction expansion of
p
2:

n xn an pn qn p2
n−2q2

n

−2 0 1
−1 1 0
0

p
2 1 1 1 −1 3

 The fundamental unit of Z[
p
2] is ε= 1+p

2, norm −1.
 As (1+p

2)2 = 3+2
p
2, the fundamental solution

to x2−2y2 = 1 is x = 3, y = 2.

Other solutions:
(1+p

2)4 = (3+p
2)2 = 17+12

p
2  x = 17, y = 12.

(1+p
2)6 = (3+2

p
2)3 = 99+70

p
2  x = 99, y = 70.

...
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