MAU23101 Introduction to number theory 6 - Continued fractions

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2020–2021 Version: April 17, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Concept & Notations

Given $x \in \mathbb{R}$, recall that $\lfloor x \rfloor = \max\{n \in \mathbb{Z} \mid n \leq x\}$. Thus

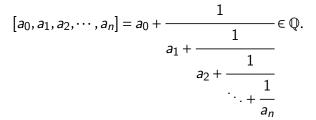
$$[3] = [\pi] = [3.99] = 3.$$

To a sequence of integers $a_0, a_1, a_2, \dots \in \mathbb{N}$, we attach the continued fractions

$$[a_0, a_1, a_2, \cdots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_n}}}} \in \mathbb{Q}.$$

Continued fractions

To a sequence of integers $a_0, a_1, a_2, \dots \in \mathbb{N}$, we attach the continued fractions

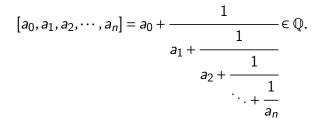


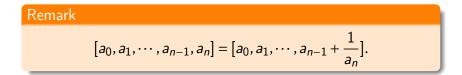
Example

$$[2,3,5,7] = 2 + \frac{1}{3 + \frac{1}{5 + \frac{1}{7}}} = \frac{266}{115}.$$

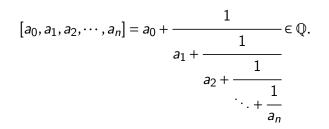
Continued fractions

To a sequence of integers $a_0, a_1, a_2, \dots \in \mathbb{N}$, we attach the continued fractions





To a sequence of integers $a_0, a_1, a_2, \dots \in \mathbb{N}$, we attach the continued fractions



We will see that $\lim_{n \to +\infty} [a_0, a_1, a_2, \cdots, a_n]$ exists; we will then denote it by

 $[a_0, a_1, a_2, \cdots] \in \mathbb{R}.$

Continued fraction expansion of a real number

The continued fraction attached to a real number

Let $x \in \mathbb{R}$ be fixed. We construct two sequences

 $x_0, x_1, x_2, \dots \in \mathbb{R}$ and $a_0, a_1, a_2, \dots \in \mathbb{Z}$

by setting $x_0 = x$ and inductively $a_n = \lfloor x_n \rfloor$ and $x_{n+1} = \frac{1}{x_n - a_n}$. If $x_n = a_n$ for some n, we stop. Note that $x_n > 1$ and $a_n \ge 1$ for all $n \ge 1$.

Example

For $x = \pi$, we find

•
$$x_0 = x = \pi = 3.14159...,$$

•
$$a_0 = \lfloor x_0 \rfloor = 3$$
, $x_1 = \frac{1}{x_0 - a_0} = \frac{1}{0.14159...} = 7.06251...$,

•
$$a_1 = \lfloor x_1 \rfloor = 7$$
, $x_2 = \frac{1}{x_1 - a_1} = \frac{1}{0.06251...} = 15.99659...$,

•
$$a_2 = \lfloor x_2 \rfloor = 15$$
, $x_3 = \frac{1}{x_2 - a_2} = \frac{1}{0.99659...} = 1.00341...$

•
$$a_3 = \lfloor x_3 \rfloor = 1$$
, $x_4 = \frac{1}{x_3 - a_3} = \frac{1}{0.00341...} = 292.63459...$,
• $a_4 = \lfloor x_4 \rfloor = 292$, and so on.

The continued fraction attached to a real number

Theorem

This process stops if $x \in \mathbb{Q}$, and goes on for all $n \in \mathbb{N}$ if $x \in \mathbb{R} \setminus \mathbb{Q}$.

Proof.

Suppose $x = \frac{A}{B} \in \mathbb{Q}$. Then $x_0 = \frac{A}{B}$, $a_0 = \lfloor \frac{A}{B} \rfloor = Q$, $x_1 = \frac{1}{x_0 - a_0} = \frac{1}{\frac{A}{B} - Q} = \frac{B}{A - BQ} = \frac{B}{R}$, where A = BQ + R is the Euclidean division of A by B. So the continued fraction expansion follows the steps of the Euclidean algorithm for gcd(A, B). After finitely many steps, we get remainder 0, so $x_n \in \mathbb{N}$, so $a_n = x_n$, so we stop. Conversely,

$$x_n = a_n \Longrightarrow x_n \in \mathbb{Q} \Longrightarrow x_{n-1} = \frac{1}{x_n} + a_{n-1} \in \mathbb{Q} \Longrightarrow \dots \Longrightarrow x_0 \in \mathbb{Q},$$

so this cannot happen if $x \in \mathbb{R} \setminus \mathbb{Q}$.

The continued fraction attached to a real number

Theorem

This process stops if $x \in \mathbb{Q}$, and goes on for all $n \in \mathbb{N}$ if $x \in \mathbb{R} \setminus \mathbb{Q}$.

Example

For
$$x = \frac{23}{9} \in \mathbb{Q}$$
, we find
• $x_0 = x = \frac{23}{9}$,
• $a_0 = \lfloor x_0 \rfloor = 2$, $x_1 = \frac{1}{x_0 - a_0} = \frac{1}{\frac{23}{9} - 2} = \frac{9}{5}$,
• $a_1 = \lfloor x_1 \rfloor = 1$, $x_2 = \frac{1}{x_1 - a_1} = \frac{1}{\frac{9}{5} - 1} = \frac{5}{4}$,
• $a_2 = \lfloor x_2 \rfloor = 1$, $x_3 = \frac{1}{x_2 - a_2} = \frac{1}{\frac{5}{4} - 1} = 4$,
• $a_3 = \lfloor x_3 \rfloor = x_3 \rightsquigarrow$ STOP.

Rationals as continued fractions

Theorem

For all
$$n \ge 0$$
, we have

$$[a_0,a_1,\cdots,a_{n-1},x_n]=x.$$

Proof.

Induction on n.

• For
$$n = 0$$
, $[x_0] = x_0 = x$, OK.

• If true for *n*, then

$$[a_0, a_1, \cdots, a_n, x_{n+1}] = [a_0, a_1, \cdots, a_{n-1}, a_n + 1/x_{n+1}]$$
$$= [a_0, a_1, \cdots, a_{n-1}, x_n] = x.$$

Rationals as continued fractions

Theorem

For all $n \ge 0$, we have

$$a_0,a_1,\cdots,a_{n-1},x_n]=x.$$

Corollary

Every $x \in \mathbb{Q}$ can be expressed as a finite continued fraction.

Example

$$\frac{23}{9} = [2, 1, 1, 4] = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}}.$$

Convergents

Nicolas Mascot Introduction to number theory

Two more sequences

Definition

To a sequence of integers $a_0, a_1, a_2, \dots \in \mathbb{N}$, we attach two sequences $p_{-2}, p_{-1}, p_0, p_1, \dots \in \mathbb{N}$ and $q_{-2}, q_{-1}, q_0, q_1, \dots \in \mathbb{N}$ by

$p_{-2} = 0,$	$p_{-1} = 1$,	$p_n = a_n p_{n-1} + p_{n-2}$ for $n \ge 0$;
$q_{-2} = 1$,	$q_{-1} = 0$,	$q_n = a_n q_{n-1} + q_{n-2}$ for $n \ge 0$.

Thus for example $p_0 = a_0$, $q_0 = 1$; and $p_1 = a_1a_0 + 1$, $q_1 = a_1$.

Remark

If x > 1, then $a_n \ge 1$ for all n, so $p_n, q_n \ge F_n$ for all $n \ge 0$, where F_n is the Fibonacci sequence defined by

$$F_0 = F_1 = 1$$
, $F_n = F_{n-1} + F_{n-2}$.

In particular $p_n, q_n \rightarrow +\infty$; more specifically

$$p_n, q_n \ge F_n \sim \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$$

Definition

The quantities $[a_0, a_1, \dots, a_n]$ $(n \ge 0)$ are called the <u>convergents</u> of the continued fraction.

Theorem

For all
$$n \ge 0$$
, we have $[a_0, a_1, \cdots, a_n] = \frac{p_n}{q_n}$.

The convergents

Theorem

For all
$$n \ge 0$$
, we have $[a_0, a_1, \cdots, a_n] = \frac{p_n}{q_n}$

Proof.

Induction on n.

• For
$$n = 0$$
, $p_0/q_0 = a_0/1 = [a_0] \rightsquigarrow OK$.

• Suppose it is true for *n*. Define a new sequence a'_m for $m \le n$ by $a'_0 = a_0, \dots, a'_{n-1} = a_{n-1}, a'_n = a_n + \frac{1}{a_{n+1}}$, and the corresponding p'_m , q'_m ; then $p'_m = p_m$ for m < n whereas $p'_n = a'_n p'_{n-1} + p'_{n-2} = (a_n + \frac{1}{a_{n+1}})p_{n-1} + p_{n-2} = p_n + \frac{p_{n-1}}{a_{n+1}}$, and similarly for the q_m . Thus $[a_0, a_1, \dots, a_n, a_{n+1}] = [a_0, a_1, \dots, a_n + \frac{1}{a_{n+1}}] = [a'_0, a'_1, \dots, a'_n]$ $\stackrel{\text{Ind.}}{=} \frac{p'_n}{q'_n} = \frac{p_n + \frac{p_{n-1}}{a_{n+1}}}{q_n + \frac{q_{n-1}}{a_{n+1}}} = \frac{a_{n+1}p_n + p_{n-1}}{a_{n+1}p_n + p_{n-1}} = \frac{p_{n+1}}{q_{n+1}}$.

Theorem

For all
$$n \ge 0$$
, we have $[a_0, a_1, \cdots, a_n] = \frac{p_n}{q_n}$

Corollary

For all
$$y > 0$$
 and for all n ,

$$[a_0, a_1, \cdots, a_n, y] = \frac{yp_n + p_{n-1}}{yq_n + q_{n-1}}.$$

Identities between successive convergents

Theorem

For all $n \ge 0$, we have $q_n p_{n-1} - p_n q_{n-1} = (-1)^n$ and $q_n p_{n-2} - p_n q_{n-2} = (-1)^{n-1} a_n$.

Proof.

Let
$$M_n = \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$
 and $X_n = \begin{pmatrix} q_n & p_n \\ q_{n-1} & p_{n-1} \end{pmatrix}$. As $X_n = M_n X_{n-1}$,
 $q_n p_{n-1} - p_n q_{n-1} = \det(X_n) = \det(M_n M_{n-1} \cdots M_0 X_{-1})$
 $= \det(M_n) \det(M_{n-1}) \cdots \det(M_0) \det(X_{-1})$
 $= (-1)^{n+1} \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = (-1)^n$.

In particular,

$$q_{n}p_{n-2} - p_{n}q_{n-2} = (a_{n}q_{n-1} + q_{n-2})p_{n-2} - (a_{n}p_{n-1} + p_{n-2})q_{n-2}$$
$$= a_{n}(q_{n-1}p_{n-2} - p_{n-1}q_{n-2}) = (-1)^{n-1}a_{n}.$$

Theorem

For all $n \ge 0$, we have $q_n p_{n-1} - p_n q_{n-1} = (-1)^n$ and $q_n p_{n-2} - p_n q_{n-2} = (-1)^{n-1} a_n$.

Corollary

The fraction p_n/q_n is always in lowest terms.

Convergence of continued fractions

Fix $x \in \mathbb{R} \setminus \mathbb{Q}$ (so the continued fraction is infinite). We define a_n , x_n for $n \ge 0$ by

$$x_0 = x;$$
 and for $n \ge 0$, $a_n = \lfloor x_n \rfloor$, $x_{n+1} = \frac{1}{x_n - a_n};$

and then p_n , q_n for $n \ge -2$ by

$$p_{-2} = 0$$
, $p_{-1} = 1$, $p_n = a_n p_{n-1} + p_{n-2}$ for $n \ge 0$,

 $q_{-2} = 1$, $q_{-1} = 0$, $q_n = a_n q_{n-1} + q_{n-2}$ for $n \ge 0$.

Comparison of successive convergents

Lemma

For all
$$n \ge 0$$
, we have $\frac{p_n}{q_n} < x$ if n is even, and $\frac{p_n}{q_n} > x$ if n is odd.

Proof.

The function $y \mapsto [a_0, \dots, a_{n-1}, y]$ is a composition of n reciprocals, so it is increasing if n is even, and decreasing if n is odd. Besides, $\frac{p_n}{q_n} = [a_0, \dots, a_{n-1}, a_n]$ whereas $x = [a_0, \dots, a_{n-1}, x_n]$, and $a_n = \lfloor x_n \rfloor < x_n$.

Comparison of successive convergents

Lemma

For all
$$n \ge 0$$
, we have $\frac{p_n}{q_n} < x$ if n is even, and $\frac{p_n}{q_n} > x$ if n is odd.

LemmaThe subsequence $\frac{p_{2n}}{q_{2n}}$ is increasing.The subsequence $\frac{p_{2n+1}}{q_{2n+1}}$ is decreasing.

Proof.

$$\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = \frac{p_n q_{n-2} - q_n p_{n-2}}{q_n q_{n-2}} = \frac{(-1)^n a_n}{q_n q_{n-2}}.$$

Convergence of continued fractions

Theorem

$$\lim_{n\to+\infty} [a_0, a_1, \cdots, a_n] = x.$$

Proof.

We have proved that

$$\frac{p_{2n}}{q_{2n}} < \frac{p_{2n+2}}{q_{2n+2}} < x < \frac{p_{2n+1}}{q_{2n+1}} < \frac{p_{2n-1}}{q_{2n-1}}.$$
This shows that $\frac{p_{2n}}{q_{2n}} \to \ell_0 \le x$, and $\frac{p_{2n+1}}{q_{2n+1}} \to \ell_1 \ge x$.
But
 $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{p_n q_{n-1} - p_{n-1} q_n}{q_n q_{n-1}} = \frac{(-1)^{n-1}}{q_n q_{n-1}} \to 0 \rightsquigarrow \ell_0 = \ell_1 = x.$

Convergence of continued fractions

Theorem

$$\lim_{n\to+\infty} [a_0,a_1,\cdots,a_n] = x.$$

Corollary

Every $x \in \mathbb{R}$ can be expressed as a continued fraction.

Remark

If
$$x \notin \mathbb{Q}$$
, this expression is unique: If $x = [b_0, b_1, \cdots]$
where $b_n \in \mathbb{N}$, then $0 \le x - b_0 = \frac{1}{b_1 + \frac{1}{b_1}} < \frac{1}{b_1} \le 1$,

so necessarily $b_0 = \lfloor x \rfloor$, etc.

Diophantine approximation

Fix $x \in \mathbb{R} \setminus \mathbb{Q}$, and define as usual a_n , p_n , q_n . Since $x \notin \mathbb{Q}$, we have $x \neq p/q$ for all $p, q \in \mathbb{Z}$. But as \mathbb{Q} is dense in \mathbb{R} , we can choose p, q so that $\left| x - \frac{p}{q} \right|$ is as small as we want.

Example

For
$$\pi = 3.1415926535...$$
, we have $\left|\pi - \frac{314}{100}\right| < 10^{-2}$, $\left|\pi - \frac{314159}{100000}\right| < 10^{-5}$, etc.

But can we achieve $\left|x - \frac{p}{q}\right|$ small with p, q not too large?

The quality of a rational approximation

Fix $x \in \mathbb{R} \setminus \mathbb{Q}$, and define as usual a_n , p_n , q_n . Since $x \notin \mathbb{Q}$, we have $x \neq p/q$ for all $p, q \in \mathbb{Z}$. But as \mathbb{Q} is dense in \mathbb{R} , we can choose p, q so that $\left|x - \frac{p}{q}\right|$ is as small as we want. But can we achieve $\left|x - \frac{p}{q}\right|$ small with p, q not too large?

Definition (Unofficial)

The <u>quality</u> of the approximation p/q of x is

$$\operatorname{Qual}_{x}(p/q) = q \left| x - \frac{p}{q} \right| = |qx - p|$$

The smaller $\text{Qual}_{x}(p/q)$, the better the approximation. So how small can $\text{Qual}_{x}(p/q)$ be?

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Proof.

We know that
$$\frac{p_{2n}}{q_{2n}} < \frac{p_{2n+2}}{q_{2n+2}} < x < \frac{p_{2n+1}}{q_{2n+1}} < \frac{p_{2n-1}}{q_{2n-1}}$$
, so for all n ,
 $\left| x - \frac{p_n}{q_n} \right| < \left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| = \frac{|p_{n+1}q_n - p_nq_{n+1}|}{q_nq_{n+1}} = \frac{|\pm 1|}{q_nq_{n+1}}$,
but also $\left| x - \frac{p_n}{q_n} \right| > \left| \frac{p_{n+2}}{q_{n+2}} - \frac{p_n}{q_n} \right| = \frac{|p_{n+2}q_n - p_nq_{n+2}|}{q_nq_{n+1}} = \frac{|\pm a_{n+2}|}{q_nq_{n+2}}$
 $= \frac{a_{n+2}}{q_n(a_{n+2}q_{n+1} + q_n)} = \frac{1}{q_n(q_{n+1} + \frac{q_n}{a_{n+2}})} > \frac{1}{q_n(q_n + q_{n+1})}$.

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{x}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{x}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{x}(p_{n}/q_{n}) < \frac{1}{q_{n+1}}$$
 tends to 0.

Example

$$\pi$$
 = **3**.14159265358979...

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

With $x = \pi$, we get

$$[3,7] = \frac{22}{7} = 3.14285714285714$$

1

$$\tau = 3.14159265358979\cdots$$

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{x}(p_{n}/q_{n}) < \frac{1}{q_{n+1}}$$
 tends to 0.

Example

With $x = \pi$, we get $[3,7,15] = \frac{333}{106} = 3.14150943396226 \cdots$ $\pi = 3.14159265358979 \cdots$

Proposition

For all
$$n \ge 0$$
, we have $\frac{1}{q_n(q_n + q_{n+1})} < \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}}$.

Corollary

$$\operatorname{Qual}_{X}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Example

With $x = \pi$, we get

$$[3,7,15,1] = \frac{355}{113} = 3.14159292035398\cdots$$

$$\pi = 3.14159265358979\cdots$$

Corollary

$$\operatorname{Qual}_{x}(p_{n}/q_{n}) < \frac{1}{q_{n+1}} \text{ tends to } 0.$$

Corollary

For any $x \in \mathbb{R} \setminus \mathbb{Q}$, we can find $p, q \in \mathbb{Z}$ such that $\text{Qual}_x(p/q)$ is arbitrarily small.

Counter-example

Not true if $x \in \mathbb{Q}$! Indeed, if x = a/b, then unless p/q = x,

$$\operatorname{Qual}_{\times}(p/q) = q \left| \frac{a}{b} - \frac{p}{q} \right| = \frac{|qa - pb|}{b} \ge \frac{1}{b}.$$

Theorem

Let $x \in \mathbb{R} \setminus \mathbb{Q}$, and let $p, q \in \mathbb{Z}$. For all $n \ge 0$, if $q \le q_n$, then $\text{Qual}_x(p/q) > \text{Qual}_x(p_n/q_n)$ unless $p/q = p_n/q_n$. Conversely, if $\text{Qual}_x(p/q) < \frac{1}{2q}$, then $p/q = p_n/q_n$ for some n.

Convergents are the best!

Theorem

For all $n \ge 0$, if $q \le q_n$, then $\text{Qual}_x(p/q) > \text{Qual}_x(p_n/q_n)$ unless $p/q = p_n/q_n$.

Proof.

Fix *n*, let $q \le q_n$, and suppose $p/q \ne p_n/q_n$. The linear system $\begin{cases}
p_n y + p_{n-1} z = p \\
q_n y + q_{n-1} z = q
\end{cases}$

in *y*, *z* can be written AX = B, where $X = \binom{y}{z}$, $B = \binom{p}{q} \in \mathbb{Z}^2$, and $A = \binom{p_n \ p_{n-1}}{q_n \ q_{n-1}} \in \operatorname{GL}_2(\mathbb{Z})$, so its only solution $X = A^{-1}B$ lies in \mathbb{Z}^2 . We can assume *y*, *z* both nonzero: if y = 0 then $p/q = p_{n-1}/q_{n-1}$ is less good, and if z = 0 then $p/q = p_n/q_n$. Finally, *y* and *z* have opposite signs since $q = q_n y + q_{n-1} z$, so $y(q_n x - p_n)$ and $z(q_{n-1} x - p_{n-1})$ have the same sign. Thus $|qx - p| = |y(q_n x - p_n)| + |z(q_{n-1} x - p_{n-1})|$.

Convergents are the best!

Theorem

Conversely, if $Qual_x(p/q) < \frac{1}{2q}$, then $p/q = p_n/q_n$ for some n.

Proof.

Write $qx - p = \epsilon \theta / q$ with $\epsilon = \pm 1$ and $\theta \in (0, \frac{1}{2})$, so $x = \frac{p + \epsilon \theta / q}{r}$. Expand $p/q = [a'_0, \dots, a'_n]$, and let p'_m/q'_m be its convergents. WLOG gcd(p,q) = 1, so $p'_n = p$ and $q'_n = q$. If $a'_n > 1$, then also $p/q = [a'_0, \dots, a'_n - 1, 1]$, so we may choose the parity of n so that $q'_n p'_{n-1} - p'_n q'_{n-1} = (-1)^n = \epsilon$. Define $y = \frac{1}{\theta} - \frac{q'_{n-1}}{q'_{n-1}} = [b_0, b_1, \cdots]$; then $b_0 = \lfloor y \rfloor \ge 1$, and $[a'_0, \cdots, a'_n, b_0, b_1, \cdots] = [a'_0, \cdots, a'_n, y] = \frac{yp'_n + p'_{n-1}}{yq'_n + q'_{n-1}}$ $=\frac{\frac{p'_{n}}{\theta}-p'_{n}\frac{q'_{n-1}}{q'_{n}}+p'_{n-1}}{q'_{n}/\theta-q'_{n-1}+q'_{n-1}}=\frac{\frac{p'_{n}}{\theta}+\frac{-p'_{n}q'_{n-1}+q'_{n}p'_{n-1}}{q'_{n}}}{q'_{n}/\theta}=\frac{p+\epsilon\theta/q}{q}=x.$ Continued fractions attached to quadratic irrationals

Quadratic irrationals

Definition

Fix
$$d \in \mathbb{Z}$$
 not a square, so $\sqrt{d} \notin \mathbb{Q}$, and introduce
 $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}, \quad \mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}.$
Given $\alpha = a + b\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$, we define
 $\overline{\alpha} = a - b\sqrt{d} \in \mathbb{Q}[\sqrt{d}], \qquad N(\alpha) = \alpha \overline{\alpha} = a^2 - db^2 \in \mathbb{Q}.$

Proposition

 $\mathbb{Z}[\sqrt{d}] \text{ is a } \underline{ring}: \text{ if } \alpha, \beta \in \mathbb{Z}[\sqrt{d}], \text{ then } \alpha + \beta, \alpha - \beta, \alpha\beta \in \mathbb{Z}[\sqrt{d}]. \\ \mathbb{Q}[\sqrt{d}] \text{ is a } \underline{field}: \text{ if } \alpha, \beta \in \mathbb{Q}[\sqrt{d}], \text{ then } \alpha \pm \beta, \alpha\beta, \alpha/\beta \in \mathbb{Q}[\sqrt{d}].$

Proof.

$$(a+b\sqrt{d}) \pm (a'+b'\sqrt{d}) = (a\pm a') + (b\pm b')\sqrt{d}.$$

$$(a+b\sqrt{d})(a'+b'\sqrt{d}) = (aa'+bb'd) + (ab'+ba')\sqrt{d}.$$

$$\alpha/\beta = (\alpha\overline{\beta})/(\beta\overline{\beta}) = (\alpha\overline{\beta})/N(\beta).$$

Properties of the norm

Lemma

Fix $d \in \mathbb{Z}$ not a square, and let $\alpha, \beta \in \mathbb{Q}[\sqrt{d}]$.

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

$$2 \ \overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}, \quad \overline{\alpha - \beta} = \overline{\alpha} - \overline{\beta}, \quad \overline{\alpha \beta} = \overline{\alpha} \overline{\beta}, \quad \overline{\alpha / \beta} = \overline{\alpha} / \overline{\beta}.$$

Proof.

If \$\alpha = a + b\sqrt{d}\$, then
$$N(\alpha) = \begin{vmatrix} a & bd \\ b & a \end{vmatrix} = \det\left(\mu_{\alpha}: \begin{aligned} \mathbb{Q}[\sqrt{d}] & \longrightarrow & \mathbb{Q}[\sqrt{d}] \\ x & \longmapsto & \alpha x \end{aligned} \right);$$
and $\det(\mu_{\alpha\beta}) = \det(\mu_{\alpha} \circ \mu_{\beta}) = \det(\mu_{\alpha})\det(\mu_{\beta}).$
Clear for \$\alpha \pm \beta\$.
\$\overline{\alpha} = \frac{N(\alpha)}{\alpha} \frac{N(\beta)}{\beta} = \frac{N(\alpha\beta)}{\alpha\beta} = \frac{\alpha\beta}{\alpha\beta}; \$\$ same proof for \$\alpha/\beta\$.

Definition

A <u>quadratic irrational</u> is an element of $\mathbb{Q}[\sqrt{d}] \setminus \mathbb{Q}$ for some $d \in \mathbb{Z}_{\geq 2}$, i.e. of the form $\alpha = \frac{a + b\sqrt{d}}{c} \in \mathbb{R} \setminus \mathbb{Q}$ with $a, b, c \in \mathbb{Z}$ with $b, c \neq 0$.

Theorem (Euler + Lagrange)

Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Then x is a quadratic irrational iff. its continued fraction expansion is ultimately periodic.

Theorem (Euler + Lagrange)

Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Then x is a quadratic irrational iff. its continued fraction expansion is <u>ultimately periodic</u>.

Example

$$[1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, \cdots] = [1, 2, \overline{3, 4, 5}] = \frac{103 + \sqrt{1297}}{97}.$$
$$\sqrt{6} = [2, 2, 4, 2, 4, 2, 4, 2, 4, \cdots] = [2, \overline{2, 4}].$$

Counter-example

$$\pi = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, \cdots].$$

$$\sqrt[3]{2} = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, \cdots]$$

$$e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, \cdots]$$

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

$$\frac{n | -2 -1 | 0 | 1 | 2 | 3}{a_n | 3 | 4 | 5 | y}$$

$$p_n | 0 | 1 | 3 | 13 | 68$$

$$q_n | 1 | 0 | 1 | 4 | 21$$

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п		-1			2	
an	0		3	4	5	у
p _n	0	1	3	13	68	68 <i>y</i> + 13
q_n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п	-2					
a _n			3	4	5	У
a _n p _n	0	1	3	13	68	68y + 13
q _n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

So
$$y = \frac{68y + 13}{21y + 4} \rightsquigarrow 21y^2 - 64y - 13 = 0 \rightsquigarrow y = \frac{32 + \sqrt{1297}}{21}$$
.

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п	-2					
an			3	4	5	У
pn	0	1	3	13	68	68y + 13
q_n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п	-2					
an			3	4	5	У
p _n	0	1	3	13	68	68y + 13
q _n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п	-2					
an			3	4	5	У
p _n	0	1	3	13	68	68y + 13
q _n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п		-1				
an			3	4	5	У
p _n	0	1	3	13	68	68y + 13
q_n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

Let
$$x = [1, 2, \overline{3, 4, 5}]$$
. Introduce $y = [\overline{3, 4, 5}] = [3, 4, 5, y]$.

п	-2					
an			3	4	5	У
pn	0	1	3	13	68	68 <i>y</i> + 13
q_n	1	0	1	4	21	<i>y</i> 68 <i>y</i> + 13 21 <i>y</i> + 4

$$x = \frac{3y+1}{2y+1} = \frac{(117+3\sqrt{1297})/21}{(85+2\sqrt{1297})/21} = \frac{(117+3\sqrt{1297})(85-2\sqrt{1297})}{(85+2\sqrt{1297})(85-2\sqrt{1297})} = \frac{103+\sqrt{1297}}{97}.$$

Suppose
$$x = [a_0, a_1, \dots, a_r, b_0, b_1, \dots, b_s].$$

Let $y = [\overline{b_0, b_1, \dots, b_s}] = [b_0, b_1, \dots, b_s, y].$

Then
$$y = \frac{yp_s + p_{s-1}}{yq_s + q_{s-1}}$$
 satisfies an equation of degree 2

$$\rightsquigarrow y = \frac{-B \pm \sqrt{\Delta}}{2A} \in \mathbb{Q}[\sqrt{\Delta}].$$
 Besides, $y \in \mathbb{R}$ so $\Delta > 0$.

So
$$x = [a_0, a_1, \dots, a_r, y] = \frac{yp_r + p_{r-1}}{yq_r + q_{r-1}} \in \mathbb{Q}[\sqrt{\Delta}],$$

and $x \notin \mathbb{Q}$ since its continued fraction expansion is infinite.

Let
$$x = \frac{a+b\sqrt{d}}{c}$$
 be a quadratic irrational.
Change the sign of $a, b, c \rightsquigarrow WLOG \ b > 0$.
Then $x = \frac{a+\sqrt{b^2d}}{c} = \frac{a|c|+\sqrt{b^2c^2d}}{c|c|} = \frac{R+\sqrt{D}}{S}$,
where $R = a|c|, S = c|c|$ satisfy
 $R, S \in \mathbb{Z}, S \neq 0$, and $D - R^2 = b^2c^2d - a^2c^2$ is divisible by S .
Imagine we begin the continued fraction: we get $x_1 = \frac{1}{x-\lfloor x \rfloor}$
 $= \frac{1}{\frac{R+\sqrt{D}}{5}-\lfloor x \rfloor} = \frac{1}{\frac{R-\lfloor x \rfloor S + \sqrt{D}}{5}} = \frac{1}{\frac{-R'+\sqrt{D}}{5}} = \frac{R'+\sqrt{D}}{\frac{(-R'+\sqrt{D})(R'+\sqrt{D})}{5}} = \frac{R'+\sqrt{D}}{S'}$,
where $R' = \lfloor x \rfloor S - R, S' = \frac{D-R'^2}{5}$ satisfy again $R', S' \in \mathbb{Z}$,
 $S' \neq 0$, and $S' \mid (D - R'^2)$ since $SS' = D - R'^2$.
Thus for all $n \ge 0$, $x_n = \frac{R_n + \sqrt{D}}{S_n}$ with $R_n, S_n \in \mathbb{Z}$ and D fixed;
furthermore $S_n S_{n+1} = D - R_{n+1}^2$.

Thus for all $n \ge 0$, $x_n = \frac{R_n + \sqrt{D}}{S_n}$ with $R_n, S_n \in \mathbb{Z}$ and D fixed; furthermore $S_n S_{n+1} = D - R_{n+1}^2$. Now $x = [a_0, a_1, \dots, a_{n-1}, x_n] = \frac{x_n p_{n-1} + p_{n-2}}{x_n a_{n-1} + a_{n-2}}$. Solve for x_n : $xx_nq_{n-1} + xq_{n-2} = x_np_{n-1} + p_{n-2}$ $x_n = -\frac{xq_{n-1}-p_{n-1}}{xq_{n-2}-p_{n-2}} = -\frac{q_{n-1}}{q_{n-2}} \frac{x-\frac{p_{n-1}}{q_{n-1}}}{x-\frac{p_{n-2}}{r}}.$ Take conjugates: $\frac{R_n - \sqrt{D}}{S_n} = \overline{x_n} = -\frac{q_{n-1}}{q_{n-2}} \frac{\overline{x} - \frac{p_{n-1}}{q_{n-1}}}{\overline{x} - \frac{p_{n-2}}{q_{n-2}}}.$ But when $n \to \infty$, $\frac{\overline{x} - \frac{p_{n-1}}{q_{n-1}}}{\overline{x} - \frac{p_{n-2}}{2}} \to \frac{\overline{x} - x}{\overline{x} - x} = 1$; so for *n* large enough, $\overline{x_n} < 0 \rightsquigarrow \frac{2\sqrt{D}}{\varsigma} = x_n - \overline{x_n} > 1 > 0 \rightsquigarrow S_n > 0.$

For *n* large enough, $S_n > 0$; besides, $S_n S_{n+1} = D - R_{n+1}^2$. Thus for *n* large enough, $|R_n| \le \sqrt{D}$ and $S_n \le D$. \rightsquigarrow The pair (R_n, S_n) takes finitely many values \rightsquigarrow There exist n, m > 0 such that

$$x_{n+m} = \frac{R_{n+m} + \sqrt{D}}{S_{n+m}} = \frac{R_n + \sqrt{D}}{S_{n+m}} = x_n,$$

and the process is periodic from there on.

Example

n	0	1	2	3	
x _n	$\sqrt{6}$				
a _n					

Example

n
 0
 1
 2
 3

$$x_n$$
 $\sqrt{6}$
 $\frac{1}{\sqrt{6}-2} = \frac{2+\sqrt{6}}{2}$
 a_n
 2

Example

Example

Example

Let $x = \sqrt{6}$. We compute

So the process repeats itself from there on.

$$\rightarrow \sqrt{6} = \sqrt{6} = [2, 2, 4, 2, 4, 2, 4, 2, 4, ...] = [2, \overline{2, 4}].$$

The Pell-Fermat equation

The equation

Fix $d \in \mathbb{N}$, not a square.

We want to solve the Diophantine equation

$$x^2 - dy^2 = 1 \qquad (x, y \in \mathbb{Z})$$

Trivial solutions: $x = \pm 1$, y = 0. Are there more?

Remark

If
$$d = n^2$$
 were a square, then
 $x^2 - dy^2 = x^2 - (ny)^2 = (x + ny)(x - ny) \rightarrow \text{not interesting.}$

Example

d =

2: are solutions of
$$x^2 - 2y^2 = 1$$
.

d = 61: The smallest solution to $x^2 - 61y^2 = 1$ is

The equation

Fix $d \in \mathbb{N}$, not a square.

We want to solve the Diophantine equation

$$x^2 - dy^2 = 1 \qquad (x, y \in \mathbb{Z})$$

Trivial solutions: $x = \pm 1$, y = 0. Are there more?

Remark

If
$$d = n^2$$
 were a square, then
 $x^2 - dy^2 = x^2 - (ny)^2 = (x + ny)(x - ny) \rightarrow \text{not interesting.}$

Example

$$d = 2$$
: $(\pm 3, \pm 2)$, $(\pm 17, \pm 12)$ are solutions of $x^2 - 2y^2 = 1$.

d = 61: The smallest solution to $x^2 - 61y^2 = 1$ is

The equation

Fix $d \in \mathbb{N}$, not a square.

We want to solve the Diophantine equation

$$x^2 - dy^2 = 1 \qquad (x, y \in \mathbb{Z})$$

Trivial solutions: $x = \pm 1$, y = 0. Are there more?

Remark

If
$$d = n^2$$
 were a square, then
 $x^2 - dy^2 = x^2 - (ny)^2 = (x + ny)(x - ny) \rightarrow \text{not interesting.}$

Example

$$d = 2$$
: $(\pm 3, \pm 2)$, $(\pm 17, \pm 12)$ are solutions of $x^2 - 2y^2 = 1$.

d = 61: The smallest solution to $x^2 - 61y^2 = 1$ is $x = 1766319049, \quad y = 226153980.$

Interpretation: units in real quadratic fields

Recall that
$$\mathbb{Z}[\sqrt{d}] = \{x + y\sqrt{d} \mid x, y \in \mathbb{Z}\}$$
 is a ring.

Lemma

Let
$$\alpha \in \mathbb{Z}[\sqrt{d}]$$
. Then $\alpha \in \mathbb{Z}[\sqrt{d}]^{\times}$, i.e. $1/\alpha \in \mathbb{Z}[\sqrt{d}]$, iff. $N(\alpha) \in \mathbb{Z}^{\times}$, i.e. $N(\alpha) = \pm 1$.

Proof.

If $\alpha, \beta \in \mathbb{Z}[\sqrt{d}]$ are such that $\alpha\beta = 1$, then

$$N(\alpha)N(\beta) = N(\alpha\beta) = N(1) = 1.$$

Conversely, if $N(\alpha) = \pm 1$, then

$$\frac{1}{\alpha} = \pm \frac{N(\alpha)}{\alpha} = \pm \frac{\alpha \overline{\alpha}}{\alpha} = \pm \overline{\alpha} \in \mathbb{Z}[\sqrt{d}].$$

Interpretation: units in real quadratic fields

Recall that
$$\mathbb{Z}[\sqrt{d}] = \{x + y\sqrt{d} \mid x, y \in \mathbb{Z}\}$$
 is a ring.

Lemma

Let
$$\alpha \in \mathbb{Z}[\sqrt{d}]$$
. Then $\alpha \in \mathbb{Z}[\sqrt{d}]^{\times}$, i.e. $1/\alpha \in \mathbb{Z}[\sqrt{d}]$, iff.
 $N(\alpha) \in \mathbb{Z}^{\times}$, i.e. $N(\alpha) = \pm 1$.

Relation with the Pell-Fermat equation:

$$N(x+y\sqrt{d}) = (x+y\sqrt{d})(x-y\sqrt{d}) = x^2 - dy^2,$$

so $x^2 - dy^2 = 1 \iff x + y\sqrt{d}$ is a unit of norm +1.

Example

Trivial solutions $x = \pm 1$, $y = 0 \iff$ trivial units $\pm 1 \in \mathbb{Z}[\sqrt{d}]^{\times}$.

Theorem (Dirichlet; accepted without proof)

Let $d \in \mathbb{N}$, not a square. There exists a fundamental unit $\varepsilon \in \mathbb{Z}[\sqrt{d}]^{\times}$, $\varepsilon \neq \pm 1$ such that

$$\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm \varepsilon^n \mid n \in \mathbb{Z}\}.$$

Remark

 $\varepsilon \neq \pm 1$, so $|\varepsilon| \neq 1$, so $\varepsilon^n \neq \pm 1$ unless n = 0; thus $\#\mathbb{Z}[\sqrt{d}]^{\times} = \infty$.

Theorem (Dirichlet; accepted without proof)

Let $d \in \mathbb{N}$, not a square. There exists a <u>fundamental unit</u> $\varepsilon \in \mathbb{Z}[\sqrt{d}]^{\times}$, $\varepsilon \neq \pm 1$ such that $\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm \varepsilon^n \mid n \in \mathbb{Z}\}.$

Remark (How unique is ε ?)

We could replace ε with $\pm \varepsilon^{\pm 1}$. As $N(\varepsilon) = \pm 1$, if $\varepsilon = a + b\sqrt{d}$, then $\varepsilon^{-1} = \pm N(\varepsilon)/\varepsilon = \pm \overline{\varepsilon} = \pm (a - b\sqrt{d})$, hence $\pm \varepsilon^{\pm 1} = \pm a \pm b\sqrt{d}$.

It is customary to choose a, b > 0, so that $\varepsilon > 1$. Then for $n \in \mathbb{N}$, we have $\varepsilon^n = a_n + b_n \sqrt{d}$ with $a_n, b_n \in \mathbb{N}$ and increasing, so ε corresponds to the smallest solution to $x^2 - dy^2 = \pm 1$.

Theorem (Dirichlet; accepted without proof)

Let $d \in \mathbb{N}$, not a square. There exists a fundamental unit $\varepsilon \in \mathbb{Z}[\sqrt{d}]^{\times}$, $\varepsilon \neq \pm 1$ such that $\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm \varepsilon^n \mid n \in \mathbb{Z}\}.$

Let $u = \pm \varepsilon^n \in \mathbb{Z}[\sqrt{d}]^{\times}$. Then $N(u) = N(\pm 1)N(\varepsilon)^n = N(\varepsilon)^n$, as N(-1) = +1. Thus • If $N(\varepsilon) = +1$, then N(u) = +1 for all n \rightsquigarrow Solutions of $x^2 - dy^2 = 1 \iff \{\pm \varepsilon^n \mid n \in \mathbb{Z}\}.$

• If $N(\varepsilon) = -1$, then N(u) = +1 iff. *n* is even \rightsquigarrow Solutions of $x^2 - dy^2 = 1 \iff \{\pm \varepsilon^{2n} \mid n \in \mathbb{Z}\}.$

Corollary

For all
$$d \in \mathbb{N}$$
 not square, $x^2 - dy^2 = 1$ has ∞ solutions.

Solving Pell-Fermat

If
$$x = a > 0$$
, $y = b > 0$ is a solution to $x^2 - dy^2 = \pm 1$, then

$$\left|\frac{a}{b} - \sqrt{d}\right| = \frac{\left|\frac{a}{b} - \sqrt{d}\right| \left|\frac{a}{b} + \sqrt{d}\right|}{\left|\frac{a}{b} + \sqrt{d}\right|} = \frac{\left|\frac{a^2}{b^2} - d\right|}{\frac{a}{b} + \sqrt{d}} = \frac{|a^2 - db^2|}{b(a + b\sqrt{d})} = \frac{1}{b(a + b\sqrt{d})}$$

is very small, so a/b approximates \sqrt{d} .

More specifically, since $a = \sqrt{db^2 \pm 1} \ge b\sqrt{d - 1/b^2} \ge b$, we have

$$\operatorname{Qual}_{\sqrt{d}}(a/b) = |a - b\sqrt{d}| = \frac{1}{a + b\sqrt{d}} < \frac{1}{a + b} \le \frac{1}{2b},$$

so a/b is a convergent of $\sqrt{d}!$

 \rightsquigarrow All the solutions to $x^2 - dy^2 = \pm 1$, in particular the fundamental one, are among the convergents of \sqrt{d} .

Example: $x^2 - 3y^2 = 1$

Continued fraction expansion of $\sqrt{3}$:

n	Xn	a _n	p _n	q _n	$p_{n}^{2} - 3q_{n}^{2}$
-2			0	1	
-1			1	0	
0	$\sqrt{3}$	1	1	1	-2 X
1	$\frac{1}{\sqrt{3}-1} = \frac{1+\sqrt{3}}{2}$	1	2	1	+1 🗸

→ The fundamental unit of $\mathbb{Z}[\sqrt{3}]$ is $\varepsilon = 2 + \sqrt{3}$, norm +1. → The fundamental solution to $x^2 - 3y^2 = 1$ is x = 2, y = 1. Other colutions:

Other solutions:

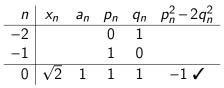
•
$$(2+\sqrt{3})^2 = 7+4\sqrt{3} \implies x=7, y=4.$$

• $(2+\sqrt{3})^3 = 26+15\sqrt{3} \implies x=26, y=15.$

.

Example:
$$x^2 - 2y^2 = 1$$

Continued fraction expansion of $\sqrt{2}$:



 \rightsquigarrow The fundamental unit of $\mathbb{Z}[\sqrt{2}]$ is $\varepsilon = 1 + \sqrt{2}, \text{ norm } -1.$

 \rightsquigarrow As $(1 + \sqrt{2})^2 = 3 + 2\sqrt{2}$, the fundamental solution to $x^2 - 2y^2 = 1$ is x = 3, y = 2.

Other solutions:

•
$$(1+\sqrt{2})^4 = (3+\sqrt{2})^2 = 17+12\sqrt{2} \implies x=17, y=12.$$

• $(1+\sqrt{2})^6 = (3+2\sqrt{2})^3 = 99+70\sqrt{2} \implies x=99, y=70.$